
PH YSI CAL REVIEW VOLUME 140, NUMBER 3B 8 NOVEM B ER 1965

Self-Consistent y Trajectory in the New Foi~ of the Strip Approximation

P. D. B. CoLLINs) AND VIGDQR L. TEPIITz)

Laurence Radiation Laboratory, University of California, Berkeley, California

(Received 4 June 1965}

The new form of the strip approximation, devised by Chew, is applied to the problem of "bootstrapping"
a p trajectory in the m-z system. Even in the absence of other trajectories it is possible to obtain a self-

consistent p trajectory and residue functions a(t} and y(t} for t &0, with strip widths in the range 150 to
300 m . A particular example is given in detail. The absence of the force from other trajectories, and the

rapid variation of a{t}and y(t) for t &~ 0, mean that our results can not represent the real p trajectory, but at
least they conlrm the viability of the methods used.

r. INTRODUCTION

'HIS paper is one of a series devoted to applying
the new form of the strip approximation' to the

calculation of the m-x scattering amplitude. The physical
principles underlying the new form of the strip approxi-
mation have been given in previous papers. " The
amplitude is represented by its dominant Regge po1.es,
with singularities which satisfy the Mandelstam rep-
resentation, and should be correct in the resonance
region and in the region of Regge asymptotic behavior.
If the principles of maximal analyticity of the 6rst and
second kinds are valid, it is hoped that with the physical

Regge trajectories, such an amplitude will be seH-

consistent in the sense that the "potential" due to the
crossed-channel singularities will generate the direct-
channel singularities. Chew and Jones' have devised a
set of equations which are suitable for investigating
this possibility.

The problem has two parts, the calcula, tion of the
"potential, " and the solution of the E/D equations
in the presence of the logarithmic singularity which

this potential exhibits. The singularity occurs at the
point where the resonance region is matched to the

Regge asymptotic region, the boundary of the strip.
Some preliminary results of solving E/D equations
with such a boundary condition have already been
reported, ' but only for a potential corresponding to the
exchange of a axed-spin particle. In this paper we report
an attempt to "bootstrap" a complete trajectory. The
full w-m amplitude has several trajectories, I', I", p,
and probably others, and a search for self-consistency
with so many parameters presents a formidable prob-
lem. Also the "potential" resulting from the exchange
of even-signature trajectories has some curious features
which are currently under investigation, but the p
trajectory generates a potential which is very similar
to the form obtained from a 6xed-spin particle, and
seems quite straightforward. The approximation of
supposing that the p resonance alone dominates the

*Work performed under auspices of the U. S. Atomic Energy
Commission.

» D.S.I.R. Research Fellow.
,". Present address: CERN, Geneva 23, Switzerland.
' G. F. Chew, Phys. Rev. 129, 2363 (1963).' G. F. Chew and C. E. Jones, Phys. Rev. 135, 8208 (1964).' D. C. Teplitz and V. L. Teplitz, Phys. Rev. 137, 3136 (1965).
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m-m amplitude has often been made with fairly satis-
factory results, 4 and so, as a preliminary to a more
ambitious calculation, we have tried to 6nd an ampli-
tude in which the force from the p trajectory in the
crossed channels generates an identical trajectory in
the direct channel. This is not a true bootstrap situation,
of course, because the potential also gives rise to an I=0
trajectory which has not been included in the input,
but the fact that we have been successful in this more
limited enterprise is somewhat encouraging.

In Sec. II we discuss the calculation of the potential
following the prescription of Chew and Jones, and in
succeeding sections we write down the X/D equations,
and consider the parametrization of the residue and
trajectory functions. The results presented in Sec. V
show that it is indeed possible to obtain self-consistent

p trajectories, a(t), and residues, p(t); or at least they
are self-consistent for t&0. The output trajectories
have a large imaginary part as Re 0, approaches 1,
however, so the physical p can not be observed directly,
but there is a peak in the cross section. Also the input
p width is more than twice the experimental value.
These facts, however, may only be an indication of the
difhculty of continuing a(t) and &(t) into the region
above threshold where they become complex, without
a better representation of the double spectral function.

Finally we compare the results of this calculation
with a formula used by Chew and Teplitz' in relating
the ~-x total cross section to the slope of the Pomeran-
chuk trajectory and the width of the p.

II. THE POTENTIAL FUNCTION

In the new form of the strip approximation the
scattering amplitude is represented by a sum of six
items from different regions of the double spectral
functions, '

A(s, t) =P; $R;"(s,t)+gQ, "'(s,u)5
+Q; LR,' (t,s)+$,R;"'(t,u)5

+P„PR„'~(u,s)+P„R~"(u, t)5, (I)
4 See for example, F. Zachariasen and C. Zemach, Phys. Rev.

128, 849 (1962).' G. F. Chew and V. L. Teplitz, Phys. Rev. 136, 31154 (1964).
'Most of the formulas in this section are taken from Ref. 2,

above, where their signi6cance is explained.
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and note that

ImLQ((z)]=-', s P((s) for —1&s&+1
= —Q)(—z)sinwl for s & —1. (12)

due to the first term of Eq. (10). In fact, s

1BP(s):—ImBP(sr) ln(st —s)

0 t
ImB, )'(s,)= dl ImQ( 1+

2~9 I 2g sI

x r"'{i)r.(,)(—{— {{3)
2gP

III. THE N/D EQUATIONS

By representing the partial-wave amplitudes as'

A +(s)=q."&+(s)/D(+(s) (14)

where X(+(s) has the left-hand cut of A(+(s), and. the
right-hand cut for s) sr, and DP(s) has the right-hand
cut for 4&s&s~, we obtain the integral equation

A FORTRAN program has been devised to calculate
the function 8~ for any input y and 0.. To calculate
both B( +(s) and B) (s) from the exchange of a single
trajectory, at a sufhcient number of values of s to be
able to solve the S/D equations t =20], and with a
sufhcient number of values of / to be able to examine
the output trajectories L=10], requires about 6 min
on an IBM 7094, if all the terms of Eq. (10) are in-
cluded. It is found that the third and fourth terms of
the right-hand side of Eq. (10), which involve I'(1) for
1)sr, and the final term of Eq. (10), which is the con-
tribution of direct channel poles to the left-hand cut,
are all very small for p exchange, and the results are
not appreciably altered by neglecting them. In the
results quoted in this paper these terms were neglected,
but had they been included the curves of Figs. 1 to 4
would have been almost completely unchanged.

We also need. to know ImB(p(sr), and from the first
term of Eq. (10) we find

s)n 8((sr) =p((sr) ImB( (sr), (19)

where bg is the phase shift.
A method of coping with this singularity by intro-

ducing a resolvant kernel has been discussed by Chew. s

He shows that the solution of Eq. (15) can be written

X)(s)= 0((s,s') V(o(s')ds', (20)

where ll)')'(s') is the solution of

X) (s) =B) (s)+ ds It( (s,s )cV( (s') . (21)

D (,)(s)=0. (22)

Above threshold both D and n have imaginary parts,
but if these are small it remains approximately true for
all s that

ReLDa. [.(,)) (s)]=0.
For a Regge pole of the form

r(s)P.(,)(1+1/2q ')
A( t)=s

sin)r(r (s)

the I, discontinuity is

(23)

(24)

Expressions have been given' for O((s,s') and E)'(s,s')
in terms of B( (s), sin'8((sr), and sr.

Apart from this complication, the determination of
$)(s) and D((s) from Eqs. (15) and (16) is straight-
forward. Details of a zoRrRAN program for solving
the equations are available. 'o

A pole in the amplitude is represented by a zero of
the D function, and the trajectory of such poles is the
function a(s) such that

BF(s')—B) (s)
Xr(s) =BP(s)+ ds'— since

Ar(s, t)= —I'(s)P (.)(—1—1/2q s),

with

go s —s
ImLP (s)]=—P (—s) sin)r(r for s)1. (26)

&&p)(s')&)(s')
~ (15) Thus the partial-wave projection of Eq. (24) is

where

1 *' p) (s') V) (s')
D((s) = 1—— ds'

s —s

t
(16) B((s)= —I'(s) P (*) —1— Q) 1+

p 2q,' 2q si

(17) X, 27)
2(q 2)(+)

g G. F. Chew, Phys. Rev. 130, 1264 (1963}.
However K ($5) t f th F dh lm

' V. L. Teplitz, Phys. Rev. 13?, B142 (1965}.' D. C. Teplitz and V. L. Teplitz, Lawrence Radiation Labora-because B( (s) is logarithmically divergent as s ~ sr tory Report UCRL-11696, 1964 iunpubhshed).
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and combining Eq. (11) with"

2'-(s)Q~(z) =
(t—n) ((+a+1)

~'(1+1)
EQ~(s))'=

1 21+1

(28)

(29)

where (1—o) is the intercept of the trajectory with
t=0. It was found that a similar pole approximation
was not suitable for the residue function, since the
output mould not reproduce such a behavior. Instead
it was found convenient to make use of a formula given
by Chew and Teplitz, '

v(t)/ '(t) =(t—t)B-{)'(t) (3&)

we find that if a(sa) =t, then

1'(sa)
B)(s) (30)'"'" '(s )Ls —s)P (s )+1)(—q*') '"'

which, from Eq. (5),
=v(»)ia'(»)L» —s).

Thus the residue of a pole of B~(s) is

X(s) - y(s )

(dDi(s)/ds), ,s a'(sa)

(31)

(32)

With this expression we can obtain y(s) from the solu-
tion of the X/D equations.

IV. REGGE-POLE PARAMETERS

Unfortunately there is very little experimental
knowledge of the Regge parameters to guide us in our
choice of trial functions. Within the framework of this
calculation we know that a and y are real analytic
functions cut from threshold to 00, and so we can write'

,
p-(t')

a(t) =np+ dt'

g,
t' —t

pv(t')
q(t) =q+ dt

g,

(33)

Very little is known about the forms of p and p~ except
that they must be small in the region where resonances
occur. The strip approximation also requires that
p, (t) be negligible for t) tq, so the main weight of the
p's must lie in the region between the highest resonances
and the strip boundary. Since me only require a and y
for 5&0, it is possible to make simple approximations
to the integrals (33) and (34).

For «x we take a three-parameter form,

a(t) =no+ay/(1 —t/ts),

however, if we also require n(28) = 1, corresponding to
the p meson, we can reduce the parameters to tmo.

%'e take

(t) 1— —c(1—) (1—), (36)

nBateman Manuscript Project, Higher Truescendeetu/ Func-
tions (McGraw-Hill Book Company, Inc. , New York, 1953), Pol.
I, Eqs. 3.12(4) and 3.12(6).

Q «&C1+56/(t —4))
~(t) = ca'(t) $t—t)

L(t-4)/4). "" (39)

where c is some constant. This parametrization has
the advantage of relating the parameters of y to those
of n, leaving only two further variables, c and $. Also,
y is a slowly varying function of both t and t. Our
program thus consists of varying the four parameters
a, tz, c, and t until self-consistency is achieved. From
(31) the width of the p will be

(y(m, ')/a'(m, '))Lq, '/m, )= 1.13'�(28)/a'(28) . (40)

How'ever, this involves the use of the functions above
1=0, where me can no longer rely on them.

V. RESULTS

A search was made for a self-consistent set of parame-
ters for the p with the various choices of s~. We use
P"=-'„g=—1, and solve the 1V/D equations for A .
It was found that a Rat input trajectory gave a steep
output trajectory and vice versa, so it was fairly easy
to make a search, varying u and t~ until both input and
output trajectories had the same shape. The slope of the
output trajectory is certainly not independent of the
form of the input residue function, but with our parmet-
rization the main t dependence of (39) is in a, so that in
choosing 0. we have approximately 6xed y except for
the overall constant c. Other forms of residue function
gave much less good results.

By adjusting c one can alter the height of the output
trajectory until it coincides with the input. Finally t
can be varied to try to make the input and output
residues as similar as possible, though this requires a
compensating adjustment of c.

There is no unique self-consistent solution. It is
possible to obtain near self-consistency with various
combinations of s~ in the range f50 to 300 ns ', c from
0.2 to 0.35 (i.e. , intercept of 0.8 to 0.65), and t from
~s~ to +~sj, taking c to be the dependent variable. In
view of the large amount of computer time involved,

The difference between our function Bts'(t) and the
function obtained from the exchange of an "elementary"
(fixed spin) p is not great, and we can approximate

t Q((1+m, '/2qP)
B,(t)=const(1+

2q 2
(q 2) /+1

and obtain
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FIG. 1. The input and output trajectories

a „„=0.330+0.420/(1 —t/75).

n (t) =0 330+0.420/(1 —t/75)

3370 Q (g&(2)
v(t) = (6o—t)

(75 t)2 (14)a(t)+1

(41)

In Fig. 1 we plot n;„(t) and compare it with n, &(t). It
will be seen that they agree very well for t&0. But

I 40

IOO—

50—

and the lack of correspondence to the real world through
the neglect of the force from other trajectories, we did
not carry out an exhaustive search, and quote here just
one of our better results, without claiming that more
perfect self-consistency, or a closer approximation to
the physical p, can not be obtained.

Kith s~=200 m„', it was found that there is good
self-consistency if a= 0.25, t~= 75, c= 107, and t= 60.

Thus

larger width, because we have not included the forces
from other trajectories, but the magnitude of the dis-

crepancy is a little disturbing. In Fig. 4 we plot the
partial-wave cross section for l= 1. Despite the absence
of s, zero of ReLDt(s) j there is a peak at s"'= 5.8 ttt

(ttt, =5.4ttt ), but its full width at half-maximum is
=5 ttt, . Our intercept n(0) =0.75 is rather higher than
experiment indicates (=0.5) n but we have not been
able to produce self-consistent trajectories with sufB-
cient slope to pass from 0.5 at I,=0 to 1.0 at t= 28. This
is possible with more rapidly varying residue functions,
but such residues can not be made self-consistent.

O. Io —,

y 005—

p output

((I input

P predielo(t

P output

0 I I

-200 -150 - IOO

i I I I

-50 0
t(m 2)

FIG. 3. The residue function p for the p and P trajectories.

VI. THE E=O CHANNEL

Though we have not included the Pomeranchon
force, we do of course obtain a trajectory in the I=O
channel (A+), the principal diiierence from I= 1 being
that crossing matrix element (8

' is now 1 instead of ~~.

In fact, with the neglect of the terms mentioned as
being small at the end of Sec. II, this is the only
diGerence. Figures 1—3 also include the results for this
f=0 output. It will be seen that n(0) is slightly greater
than 1, the unitarity limit, but this is not surprising in
view of the large p width we have used. There is no sign
of a secondary I" trajectory.

The I' trajectory is almost exactly parallel to the p,

0- 200 l50 —
I 00

t (mua)
-50 0 40

FIG. 2. yja' for the p and P trajectories. The prediction for P
is based on Eqs. (43) and (44).

above t= 0 they begin to diverge, and in fact Rel D (s)j
ceases to have zeros for 0.&0.85. In Fig. 2 we show
(y/n');, and compare it with N /ReD ' output. Again
very good agreement is found except near 1=0, where
the output diverges considerably from our smooth
input curve. Figure 3 gives the values of y and yo„~
corresponding to Figs. 1 and 2. Since the potential
depends on y(t) and n(t) only for t(0, we regard this
as a self-consistent solution, but it is clear that our
results can not be continued into the physical region.

From (40) the input width of the p is 1.95 ttt„or
about 2.5 times the generally accepted experiment. al
width. It is not really surprising that we require a

n~(t) =n, (t)+0.320. (43)

Using this expression for 0.~, we have compared, in
Figs. 2 and 3, the output values of y/n' and y with the
prediction of (39). Remembering the crossing matrix

50

0
2

I

6
E We)

IO

Lt R. J. N. Phillips and W. Rarita, Phys. Rev. 139, 31336
(1965).

FIG. 4. The I= 1, p-~ave cross section in ~»»barns versus energy.
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element, we have
Q.p(, )[1+S6/(t—4)]

yg (t) =2cu~'(t) (t—t) . (44)
E(t—4)/43"'"+'

It will be seen that the prediction is well satished ex-
cept for t~&0.

Reu(t) has its maximum at t=20tn, ', though we
have not traced the fall of Reu(t) in Fig. 1, since,
because of the large imaginary parts of a and D, it is
not correct to identify the second zero of Rea with the
returning trajectory. From (33) we can see that if

p (t) has its main weight in the upper part of the strip
one wouM not expect this maximum to occur for
t(sq/2. Our present calculation appears to emphasize
the region of the double spectral function just above
threshold, so that our results cease to be correct as
we enter the resonance region.

%e conclude that it may be possible to "bootstrap"
trajectories with some hope of obtaining the physical

parameters for t&0, when all the trajectories are in-

cluded, but there is no sign that we shall be able to
obtain the correct particle masses and widths. It is
likely that the presence of competing channels is im-

portant for higher angular momenta, and this possi-
bility is being examined. "Also it may be necessary to
iterate the potential" in order to obtain a better
approximation to the double spectral functions.
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The phenomenology of two-step processes of the type A+8 —+ C+D, D ~E+P is studied for the partic-
ular case when among the 6nal particles only Ii is observed. Formulas convenient for the computation of the
polarization of Ii in terms of the parameters describing the production process are presented, and the con-
nection between the polarization of Ji and that of D, when D is not observed, is clari6ed. Numerical results
are obtained for the angular dependence of the A. polarization in the process X +p -+ x +Zo, Z' -+ y+A. at
a variety of incident energies.

l. INTRODUCTION
' /ARTICLES with spin are frequently polarized when

produced in elementary-particle reactions. As is
well known, measurement of this polarization provides
restrictions on the values of parameters, e.g. , phase
shifts, used to describe the matrix element for the
production process. If the particle is unstable, the

f Supported in part by the U. S. Air Force.
f. Based in part on a Ph.D. thesis submitted by MHC to the

University of Maryland in 1963.
*Present address.
)National Science Foundation Senior Post-Doctoral Fellow,

on sabbatical leave from the University of Maryland, 1963-64.

polarization may often be measured from the angular
distribution of the decay products and sometimes
from the polarization of one of the decay particles.

Special circumstances prevail if the produced particle
is the Z' hyperon, e.g., in the reaction

E +P-+ H+Z'.

The electromagnetic decay of the Z', via

(1.2)

involves two more neutral particles, and of the three
6nal particles m, p, and A., usually only the A is de-


